19 research outputs found

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link

    Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing

    No full text
    Microbial decomposers, especially a fungal group called aquatic hyphomycetes, play a critical role in processing plant litter in freshwaters by increasing its palatability to invertebrate shredders. Traditionally, communities of aquatic hyphomycetes have been assessed through the identification of spores, which misses non-sporulating taxa. Among new technologies, 454 pyrosequencing stands out as most promising for large-scale species identification. However, very few attempts have been made to validate its effectiveness for assessing the diversity of stream-dwelling fungal communities. We attempted to gain greater insight into the diversity of aquatic fungal communities in streams exposed to various degrees of eutrophication by using the 454 pyrosequencing technology. A total of 173,889 ITS2 pyrosequencing reads with hits for fungi were obtained from the 5 investigated streams. The majority of operational taxonomic units (OTUs) belonged to Ascomycota and the identification to the genus level was achieved for 169 OTUs. Of the total, 135,257 reads (ca. 78%) showed close affinities to aquatic hyphomycete species. Pyrosequencing showed declining fungal diversity in the most eutrophic streams, which was congruent with a reduced diversity found through spore identification. Dominance patterns revealed by connecting representative OTUs to ITS sequences from aquatic hyphomycetes were similar to those determined by traditional spore identification techniques. However, 454 pyrosequencing provided a more comprehensive view of fungal diversity; it captured almost twice as many taxa as spore counts. This study validates the effectiveness of 454 pyrosequencing for surveying the diversity of stream-dwelling fungal decomposer communities. Its application may accelerate the use of these communities for monitoring the integrity of freshwaters.The European Regional Development Fund - Operational Competitiveness Programme (FEDER-POFC-COMPETE) (FCOMP-01-0124-FEDER-013954) and the Portuguese Foundation for Science and Technology supported this study (PEst-OE/BIA/UI4050/2014 and PTDC/AACAMB/113746/2009) and S. Duarte (SFRH/BPD/47574/2008). The authors want also to thank to Conceicao Egas from Biocant for the help during interpretation of data from pyrosequencing.info:eu-repo/semantics/publishedVersio
    corecore